
ICM-
MODBUS
Inline ContaminationMonitor

ModbusGuide

200.061-EN

www.mpfiltri.co.uk



Document Revision 0.32

Covers Model Numbers

ICM-WMKR

SAFETY WARNING

Hydraulic systems contain dangerous fluids at high pressures and tempera-
tures. Installation, servicing and adjustment is only to be performed by qual-
ified personnel.
Do not tamper with this device.



Introduction 3

1 Introduction

1.1 Summary

• Optionally configure the ICM using LPA-View software.1

• Connect the ICM to RS485 port on your Modbus controller (PC or PLC).

• Connect 24V DC power supply. See Figure 1.

• Configure your controller as a Modbus RTU master, addressing slave address
204.

• The most recent measurements will be available in the result registers 56-63,
in the form of ISO or NAS codes. See Table 2.

1.2 Overview

The ICM measures and quantifies the numbers of solid contaminants in Hydraulic,
Lubrication and Transmission applications. The ICM is designed to be an accu-
rate instrument for permanently installed applications utilising mineral oil as the
operating fluid.

The unit can operate using any of the international standard formats ISO 4406:1999,
NAS 1638, AS 4059E and ISO 11218.

The ICM incorporates a serial data connection using the Modbus protocol for com-
prehensive remote control and monitoring. The Windows based LPA-View soft-
ware package is provided as a ready-made, dedicated solution.

However an alternative is to directly implement Modbus in the customers’ own
application. The Modbus controller can be a PLC or PC, allowing the ICM to be
fully integrated into the machine control system.

Modbus is a simple, popular, open and freely available protocol for industrial com-
munication.

1 For example configure it to test continuously and to automatically start testing on power-up. This can
conveniently be done before installation using a PC and the optional USBi interface product.



4 Introduction

The duties of a customer implementation can be as simple as continuously reading
the current contamination class from a Modbus ``register’’.

1.3 Use PC Software for Configuration

The free LPA-View software package can act as is a ready-made Modbus controller
for the ICM. Even if a customer intends to implement their own Modbus system,
we suggest that LPA-View is used initially to check the ICM configuration and to
verify correct operation.

The ICM was designed to be as flexible as possible. There are large number of op-
tions for setting operating modes, test result formats, alarm settings, downloading
stored data etc.

Where possible, the easiest approach is to use LPA-View to configure the test pa-
rameters and result format. Then the customer application only has to read the
results, and optionally perhaps signal the test start.



Electrical Connection 5

2 Electrical Connection

This user guide assumes a Modbus network consisting of a Controller (PC or PLC)
connected to a single ICM. It is also possible to share the network with other ICM
units or other devices, providing these are allocated separate node addresses. More
details can be provided on request.

Figure 1 ICM Electrical Connection

The ICM requires a DC power supply and the two Modbus RS485 signals, as shown
in Figure 1. The numbers shown are the pin numbers of the circular connector that
plugs into the ICM.

• The DC voltage is typically 24V, but can be 9-36V. See the user guide for the
precise range.

• Twisted pair cable should be used for the RS485 signals, for cable lengths over
a few meters. The cable supplied with the ICM is twisted pair.

• Cable lengths over a few meters should have termination resistors at each end.
These consist of, typically, 100Ω resistors connected across the two Modbus
signals (DATA+ and DATA-)

• There are other wires available for switched alarm and start signals. These are
documented separately in the user guide.



6 Modbus Operations

3 Modbus Operations

3.1 Modbus Settings

Protocol type RTU (not ASCII)
Data Bits 8
Stop Bits 1
Parity Required, Even
Baud Auto-sensing 1200-115200
Signalling RS485
Node Address 17 (or user set)

3.2 Communications Check

You should be able to read the product ID code from register 0 (from Modbus
node address 204). The product ID code is the value 54237 (decimal) or 0xD3DD
(hexadecimal)

3.3 Result Format

The ICM can present results in several different industry formats (ISO, NAS etc.)
The format required can be most easily set using LPA-View, however it is also
possible to set it via modbus. To do this, write the required value 0-4 from Table 1
to the TEST FORMAT register 19. The factory set value is 0 (ISO 4406:1999).

Value Format Main Class Example Individual Codes Example
0 ISO 4406:1999 21/20/17
1 NAS 1638 NAS 12 (12 11 11 7 6)
2 AS4059E Table 2 12A-F 12A/12B/11C/11D/7E/6F
3 AS4059E Table 1 Class 12 12 11 11 7 6
4 ISO11218 Draft ISO(12) 12 11 11 7 6

Table 1 TEST FORMAT Register 19



Modbus Operations 7

3.4 Result Codes

The most recent measurements are presented as numeric codes (i.e. numbers) ac-
cording to the the selected TEST FORMAT. These codes can be read from registers
56-63, as per Table 2.

Register ISO4406 AS4059E Table 2 NAS1638/

Code Class AS4059E Table 1/

ISO11218 (Draft)

Codes/Classes

56 ≥4μ Basic Basic
57 ≥6μ - -
58 ≥14μ A 5-15
59 ≥21μ B 15-25
60 ≥25μ C 25-50
61 ≥38μ D 50-100
62 ≥50μ E 100+
63 ≥70μ F

Table 2 RESULT CODES Registers 56-63

3.4.1 Null Values

For all formats, the special value -32768 (0x8000 hex) is used to represent a ``null’’
or ``no result’’ condition. This enables ``No Result’’ to be distinguished from a
0/0/0 ISO code, for example. ``No Result’’ could be due to an error condition, or
to a measurement not having been commanded yet. This convention is also used
for other parameters such as temperature and water content measurements, where
applicable.2

3.4.2 ISO 4406

ISO 4406 defines a set of code values to represent ranges of counts of particles
greater than the nominated sizes of ≥4,≥6 and ≥14μm(c). The ICM can display

2 User written programs should take note, to avoid displays like -32768/-32768/-32768 appearing on their
front panels



8 Modbus Operations

codes from 0 to 24. The three-part code is available in the first 3 RESULT CODES.
We additionally make available equivalent codes for the other sizes from 21 to
68μm(c), as per Table 2.

3.4.3 NAS1638 / AS4059E-1 / ISO11218

These assign code numbers for the particle counts in each size range shown in the
table. The ``basic’’ class is then the highest of these individual codes. The basic
class is in the first register, with the individual classes made available in the registers
shown.

For these standards there is a complication in that they all define an additional
class ``00’’. This is an extra ``cleaner than class 0’’ class. We distinguish this
from 0 using the numeric value -1. Negative numbers are represented in a Modbus
register using the ``twos complement’’ notation. If the user program interprets this
as a positive number it will appear as 65535 (0xFFFF hex).

Classes range from 00(-1) to 12.

3.4.4 AS4059E-2

AS4059E Table 2 also has some similarities to NAS1638. In terms of the represen-
tation in Modbus registers, the main differences are an extra 4-6μm(c) size range
and the addition of an extra ``000’’ class. This is represented using the number
-2. If the user program interprets this as a positive number it will appear as 65534
(0xFFFE hex).

3.5 Temperature and Water Content Measurements

These are contained in the TEMPERATURE register 33 and the RH (relative humid-
ity) register 34. These are scaled by a factor of 100, so that values of 12.34°C and
56.78% RH would be represented by values of 1234 and 5678 respectively. The
temperature can go negative, in which case the usual ``twos complement’’ rep-
resentation is used. Most controllers should have a facility for reading ``signed
integers’’ encoded in this way.3

3 These will appear as large positive numbers if interpreted instead as positive numbers, for example
65535.



Modbus Operations 9

The special value -32768 (0x8000 hex) is again used to indicate ``No result’’, as
per the contamination result codes. This could be due to a sensor failure or to the
unit still in the process of powering up.

3.6 Commanding Test Start

If the ICM is monitoring a single machine, it will normally be configured to test
continuously and automatically, so that the contamination measurement can be read
out at any time as described above. However some applications need a defined test
start and test end, for example end-of-line production testing, where each result
relates to a separate item being tested.

These applications can simply use a push button (or relay) wired to the ICM start
signal, or the front panel push button, or can be commanded programmatically via
Modbus.

To start or restart a test, write the value 1 to the command register 21. The test
duration can be set using LPA-View before installation, or alternatively write the
required test time (in seconds) to the TEST DURATION register 18.

3.7 Test Status

A test status code is available in register 30. This contains a number indicating
the current state of the ICM, according to Table 3. This allows a system to remotely
monitor the ICM operation, if desired, allowing more specific diagnostics.4

4 However the fault conditions are also indicated on the front panel LED, while ``No Result’’ in the case
of a fault is indicated using special result values as previously described.

5 User has not set tests to occur automatically.
6 User has set a non-zero test interval.
7 Or fluid is totally clean (no particle counts). Flow alarm can be turned off by user if this is a problem,

for example cleaning rigs.



10 Modbus Operations

Value Function Comment

0 NOT READY Unit is powering-up, or there is some problem
1 READY Ready to start a test5

2 TESTING Test in progress
3 WAITING Waiting between tests6

128 FAULT OPTICAL LED failure / sensor blocked / filled with air
129 FAULT FLOW LOW Flow too low for reliable test7

130 FAULT FLOW HIGH
131 FAULT LOGGING Fault with data logging
132 FAULT WATER SENSOR Water sensor failure

Table 3 The TEST STATUS Register



Modbus Operations 11

3.8 Test Completion

The TEST COMPLETION is indicated by register 36. This contains a number between
0 and 1000 indicating the test progress.8

3.9 Particle Counts

Some quantities are (or may become) too large to fit into a single 16-bit register.
For example the 4μm particle count could easily be more than 65535. These items
are represented using two consecutive registers; the combination makes up a 32-bit
integer. For example, the value of such a 32 bit unsigned integer stored in the two
registers 40 and 41 may be calculated using the formula:

𝑣𝑎𝑙𝑢𝑒 = (65536 × (𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 40)) + (𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 41) (1)

The particle counts are stored in registers 40-55, as shown in Table 4. There are
8 register pairs; each pair encodes one count channel as a 32 bit integer, using
two consecutive Modbus registers as explained above. The Counts are per 100ml.
Particle sizes are expressed below according to ISO4406:1999, i.e. equivalent pro-
jected area diameter. The sizes have been chosen so that all supported coding stan-
dards (NAS, ISO...) can be derived from them. The counts are all cumulative.
Differential counts can be derived by subtraction. E.g., the NAS 5-15µm count
could be calculated by subtracting the ISO 6µm(c) count from the 14µm(c) count.

Number Function Comment

40-41 ≥4µm(c)
42-43 ≥6µm(c) ≥5µm (NAS)
44-45 ≥14µm(c) ≥15µm (NAS)
46-47 ≥21µm(c) >25µm (NAS)
48-49 ≥25µm(c)
50-51 ≥38µm(c) ≥50µm(NAS)
52-53 ≥50µm(c)
54-55 ≥70µm(c) ≥100µm(NAS)

Table 4 Particle Count Registers

8 LPA-View uses this to drive the test progress bargraph.



12 Modbus Operations



Appendix A

Reference 13

Reference

Modbus Node Addressing

Modbus requests are sent to the configured ICM node address. If there is only one
ICM on network segment, then the ``Permanent Address’’ of 204 can be used.IX If
there is more than one, then unique node addresses must be configured for each.

Modbus Settings

Protocol type RTU (not ASCII)
Baud Auto-sensing 1200-115200
Parity Even
Signalling RS485
Node Address Factory set to 17. User settable 1-254.
Permanent Address 204

General Description

The ICM is a Modbus Slave. That is, it responds only to commands sent to it by the
Modbus controller (the Modbus Master). The controller can be a program running
on a PC, or a PLC.

The Master periodically sends a Modbus command ``frame’’ to the ICM node ad-
dress. The ICM acknowledges each request with a response frame.

Modbus Registers

The Modbus protocol defines many types of information interchange commands
(``function codes’’). However in order to simplify implementation the ICM only

IX This is not part of the Modbus specification (and in fact violates it). The ICM will always respond
on node address 204, in addition to the other set value. This was done so that LPA-View can connect
directly without configuration or scanning of the network.



Appendix A

14 Reference

uses one type - the Modbus ``Register’’. Conceptually the ICM appears as a collec-
tion of Modbus Registers. Each register is numbered - the ICM has 125 registers.
Each register holds a number representing some quantity. For example, register
number 2 holds a number indicating the ICM software revision.

Modbus Register Numbering

Addresses shown here are those appearing ``on the wire’’. Unfortunately some
Modbus controllers may translate these addresses to different ones. For example
for some controllers the user will need to use ``addresses’’ starting at 40000 instead
of 0.

The ICM uses the registers from 0-124.X. Registers can be divided into classes as
follows.

Status Registers

These are ``read-only’’ registers that indicate test results and ICM status. They can
be read freely at any time (although test results are only valid after a successful
test).

Setting Registers

These are read-write registers used to hold the ICM settings. Take care not to
inadvertently write to any of these registers since the ICM settings will be altered!

Some ``Setting’’ registers also change by themselves, for example the test number
register can be set, but will also automatically increment after each test.

Calibration Registers

Some registers, not documented here, are protected settings that can only be altered
during factory calibration.

X This allows all registers to fit in a single Modbus frame



Appendix A

Reference 15

The Modbus Register Map

Number Function Units Representation

0 Product ID - unsigned integer
1 Protocol ID - unsigned integer
2 Firmware Version ×100 unsigned integer
3 Hardware Options - bitmap
4-5 Machine Serial Number - 32 bit unsigned integer
6 Modbus Address - integer
7 IgnoreInitialN - unsigned integer
8-9 Test Number - 32 bit integer
10-17 Test Reference - array of 16 packed characters
18 Test Duration s unsigned integer
19 Test Format - integer
20 Test Mode - bitmap
21 Command - unsigned integer
22-23 Test Interval s unsigned 32 bit integer
24-25 Date/Time date unsigned 32 bit integer
26 Alarm Mode - unsigned integer
27 Reserved - -
28 Faults - bitmap
29 Reserved - -
30 Status - unsigned integer
31 Status Flags - bitmap
32 LED Level - unsigned integer
33 Temperature °C ×100 signed integer
34 RH % ×100 signed integer
35 Peak Pulse - unsigned integer
36 Test Completion ×1000 unsigned integer
37 Flow Indication ml/min unsigned integer
38-39 Reserved - -
40-55 Particle Counts - array of 8 32 bit integers
56-63 Result Codes - array of 8 signed integers
64-71 Contamination Limit Upper - array of 8 signed integers
72-79 Contamination Limit Lower - array of 8 signed integers



Appendix A

16 Reference

Number Function Units Representation

80 Limit Water Upper % ×100 signed integer
81 Limit Water Lower % ×100 signed integer
82 Limit Temperature Upper °C ×100 signed integer
83 Limit Temperature Lower °C ×100 signed integer
84-85 Log Interval seconds 32 bit unsigned integer
86-87 Last Download date 32 bit unsigned integer
88 Language - unsigned integer
89-116 Reserved - -
117-118 Calibration Due date 32 bit unsigned integer
119-120 Calibration Last date 32 bit unsigned integer
121 Reserved - -
122 Calibration LED Level Last - -
123 Calibration LED Level Initial - -
124 Reserved - -

Table I The ICM Modbus Register Map (continued)

Representation

Modbus Registers

All quantities are represented using Modbus registers. Modbus registers are 16 bit
(0-65535 decimal or 0-0xFFFF in hexadecimal notation).

Unsigned Integers

These are simply single modbus registers. Each can take values from 0 to 65535.
They may be simple numeric quantities such as ``test time in seconds’’. They can
also be enumerations such as ``result format’’ where ``0’’ means ISO4406, ``1’’
means NAS1638 etc.

Signed Integers

These are used for quantities that may become negative, such as °C. They are also
used for result codes using formats similar to NAS1638, where we have to represent
the NAS ``00’’ class as -1, and ``000’’ as -2.



Appendix A

Reference 17

Signed integers are represented in single modbus registers using the ``twos com-
plement’’ standard, as usual in computing. If a user-written program incorrectly
interprets a signed integer as unsigned, then positive numbers will still be inter-
preted correctly. However small negative numbers will appear as large positive
ones. In particular, -1 appears as 65535 and -2 as 65534. These might be seen
when interpreting the NAS codes mentioned above. Take care when writing soft-
ware dealing with NAS codes or Temperature measurements.

32 Bit Unsigned Integers

Some quantities are (or may become) too large to fit into a single 16-bit register. For
example the Test Number could eventually increment to more than 65535. These
items are represented using two consecutive registers; the combination makes up
a 32-bit integer. For example, the value of such a 32 bit unsigned integer stored in
registers 8-9 may be calculated using the formula:

𝑣𝑎𝑙𝑢𝑒 = (65536 × (𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 8)) + (𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 9) (1)

Bitmaps

Bitmaps are again single 16-bit Modbus registers, but they have a special inter-
pretation. Each ``bit’’ in the register has a separate function. The most important
example is the ``status flags’’ register (31). Each register bit encodes a separate
function, for example ``result valid’’, ``new result’’, ``over temperature alarm’’
etc. In this document bits are numbered starting with bit 0 = least significant bit.

A user programming environment such as a PLC programming system or a high
level computer language will normally have functions that allow easy access of
individual bit values in a register.

Arrays

An Array is simply a sequence of objects packed in consecutive registers. For
example the ``result codes’’ are in an array of 8 registers. Code[0] is in register 56,
code[1] is in register 57 etc.



Appendix A

18 Reference

In the case of an array of 32-bit integers, each element itself takes up 2 registers,
so there are are twice as many registers used as elements in the array. In the case
of the particle counts array, there are 8 particle sizes counted so these are stored in
8 × 2 = 16 registers.

Packed Characters

These are used to encode the user-settable ``test reference’’ string, used to label
each test. Characters are packed two per Modbus register. This will probably not
be used in a user-written Modbus program, but in principle the test reference could
be set to a different value for each test. The test reference string consists of of 16
characters packed into an array of 8 consecutive registers.

Date/Time

A ``Date’’ represents a calendar date and time as a 32 bit unsigned integer (it is
the number of seconds since Jan 1 1970). User programs will not generally have to
deal with this, but in principle they could e.g. read or set the real time clock from
registers 24-25. It can be useful during development to be able to read the clock
and see a continuously incrementing value of seconds.

Register Functions

Test Mode

Factory set value: 0

This is the "test mode", each bit represents an option corresponding to a tickbox on
the ICM settings screen (see our LPA-View software and in the ICM manual).

Each bit of the register encodes one tickbox.

The factory set mode is 0 for all bits, so all the tickboxes are turned off. You may
want to turn on bit 8 (disable low flow alarm when clean) if you have a very clean
system.

Here are the bit definitions:



Appendix A

Reference 19

Bit Function Comment

0 CYCLE_CONTINUOUS Continuous Testing
1 START_TEST_AUTOMATICALLY Start Testing Automatically
2 CONTINUOUS_STOP_WHEN_CLEAN Stop Testing When Clean
3 CONTINUOUS_LOG_EVERY_TEST Continuous Mode: Log Every Test
4 CONTINUOUS_CONFIRM_TARGET Repeat final test to confirm target level achieved
5 RESERVED
6 RESERVED
7 SIMULATE Produces simulated test results
8 LOW_FLOW_CLEAN_DISABLED Prevents spurious low flow alarms on clean sys-

tems

Table II Test Mode Register Bit Definitions

There is some general information about what these options do in the main ICM
manual, settings chapter.

Command Register

This is register 21. It is special in that writing a number to this register does not store
the number, but instead commands the ICM to perform a function according to the
number written. The main command is ``START’’, but the others are documented
here for completeness and avoidance.

Value Function Comment

1 START TEST Start or Restart a test
2 RECALCULATE
3 FORCE OUTPUT 1 ON
4 FORCE OUTPUT 1 OFF
5 FORCE OUTPUT 2 ON
6 FORCE OUTPUT 2 OFF
7 TEST MODE ON Flashes LED and exercises outputs
8 TEST MODE OFF
9 STOP Abort a test in progress
10 LOG ERASE Caution!
11 LOG SEEK END
12 LOG SEEK PREVIOUS

Table III Command Register



Appendix A

20 Reference

Status Register

This is read-only register 30. It contains a number (an enumeration) indicating the
status of the ICM.

Value Function Comment

0 NOT READY Unit is powering-up, or there is some problem
1 READY Ready to start a testXI

2 TESTING Test in progress
3 WAITING Waiting between testsXII

128 FAULT OPTICAL LED failure / sensor blocked / filled with air
129 FAULT FLOW LOW Flow too low for reliable testXIII

130 FAULT FLOW HIGH
131 FAULT LOGGING Fault with data logging
132 FAULT WATER SENSOR Water sensor failure

Table IV Status Register

Status Flags Bitmap

This is read-only register 31. It represents the states of various items in a bitmap
format.

Bits 0-2 are so that external equipment (for example LPA-View or a PLC/MMI)
can display, update and log results intelligently.

Bits 3 and 4 can be used to monitor the test progress.

Bits 5-10 are used to generate alarms. Depending on the selected alarm mode,
they operate the alarm relay output(s). But they can also be monitored directly by
a PLC/MMI program and used to drive indicators, for example.

Bit 11 is used internally to detect that the ICM is being controlled by modbus (from
a PLC or by LPA-View).

Finally bits 12-14 reflect the state of the ICM ``start signal’’ input and alarm output
relays.

XI User has not set tests to occur automatically
XII User has set a non-zero test interval

XIII Or fluid is totally clean (no particle counts). Flow alarm can be turned off by user if this is a problem,
for example cleaning rigs.



Appendix A

Reference 21

Bit Function Comment

0 RESULT_VALID Current result is valid
1 RESULT_NEW A new result is available
2 RESULT_LOG Current result should be logged
3 TESTING Test in progress
4 COMPLETE Test is complete
5 ALM_HI_COUNT High particle count alarm
6 ALM_HI_H2O High water content alarm
7 ALM_HI_TEMP High Temperature alarm
8 ALM_LO_COUNT Low count alarm
9 ALM_LO_H2O Low water content alarm
10 ALM_LO_TEMP Low temperature alarm
11 REMOTE_CONTROL Unit is under remote control
12 IO_IP Start signal input
13 IO_OP1 Alarm output 1
14 IO_OP2 Alarm output 2
15 UNUSED Not Currently Used

Table V Status Flags

Fault Flags Bitmap

This is read-only register 28XIV. It represents detected device or installation faults
in a bitmap format. The faults are also available as result codes in the status register,
however those are transient and may only appear briefly before a new test is started.
The fault bits here remain until the end of the next test (where they may be cleared
if the fault has gone).

Bit Function Comment

0 OPTICAL FAULT See Table IV
1 LOW FLOW See Table IV
2 HIGH FLOW See Table IV
3 DATA LOGGING See Table IV
4 WATER SENSOR See Table IV

Table VI Fault Flags

XIV firmware >= 0.43 required



Appendix A

22 Reference

Particle Counts

These use registers 40-55. There are 8 register pairs; each pair encodes one count
channel as a 32 bit integer. Counts are per 100ml. Particle sizes are expressed be-
low according to ISO4406:1999, i.e. equivalent projected area diameter. The sizes
have been chosen so that all supported coding standards (NAS, ISO...) can be de-
rived from them. The counts are all cumulative. Differential counts can be derived
by subtraction. E.g., the NAS 5-15µm count could be calculated by subtracting the
``ISO’’ 6µm(c) count from the 14µm(c) count.

Number Function Comment

40-41 ≥4µm(c)
42-43 ≥6µm(c) ≥5µm (NAS)
44-45 ≥14µm(c) ≥15µm (NAS)
46-47 ≥21µm(c) >25µm (NAS)
48-49 ≥25µm(c)
50-51 ≥38µm(c) ≥50µm(NAS)
52-53 ≥50µm(c)
54-55 ≥70µm(c) ≥100µm(NAS)

Table VII Particle Counts

Result Format

The ICM supports all major standards for the coding of particulate contamination.
The coding standard is selected by writing to register 19 ``Test Format’’. This is
a number (enumeration) indicating the format required. It can be set by the user
from LPA-View or programmatically over Modbus.

The selected format does not affect the particle count values, but does completely
change the interpretation of the result codes and set limits, if used.

Note: If the format is changed, then any set alarm limits must be changed too since
these will refer to the old format. E.g. a limit of ``NAS 11’’ cannot be directly
expressed using the ISO4406 standard.



Appendix A

Reference 23

Value Function Example

0 ISO4406:1999 18/17/11
1 NAS1638 NAS 11
2 AS4059E Table 2 12A-F
3 AS4059E Table 1 Class 12
4 ISO11218 ISO(12)

Table VIII Result Format

Result Codes

The test result ``codes’’ use up to 8 registers 56-63.
The interpretation of these result code registers depends on the selected result for-
mat. The various interpretations are listed in the following table.

Format: ISO4406 AS4059E2 NAS1638/AS4059E1/ISO11218XV

Register Code Class Class

56 4µm(c) BasicXVI Basic
57 6µm(c) - -
58 14µm(c) A 5-15µm
59 21µm(c)XVII B 15-25µm
60 25µm(c) C 25-50µm
61 38µm(c) D 50-100µm
62 50µm(c) E >100µm
63 70µm(c) F -

Table IX Result Codes

Special Values

The result codes use a few ``special’’ values in order to represent codes that are not
simple numbers.

XV NAS1638, AS4059E Table 1, and ISO11218 standards produce identical numerical codes so they are
listed together here.

XVI The ``Basic’’ class is the highest of the individual size classes
XVII ISO4406 only defines codes for the first three sizes 4,6 and 14µm(c). We extend the concept to cover

the other sizes. This allows limits to be set on the number of large particles, even when using the ISO
4406 coding system.



Appendix A

24 Reference

The NAS1638 standard defines classes ``00’’ and ``000’’, these are classes ``cleaner’’
than class 0. We represent these using signed integers of value -1 and -2 respec-
tively.XVIII

Alarm Mode

The ICM includes two relay outputs that can optionally be used for signaling the
state of the unit. These are normally used in ``stand-alone’’ applications where the
modbus interface is not used (since a modbus controller / PLC already has all the
exact results available in digital form and can work with these directly.)

There are a number of preset ``modes’’ that determine the exact function of the
relays. Refer to the ICM-R user guide for more details (in the section Settings /
Alarms / Alarm Mode).

These modes are normally set at installation time using our PC software package
LPA-View. But it is also possible to use modbus to set the operating mode of these
relays, by writing the corresponding integer to the alarm mode register 26.

Alarm Limits

Settable Upper and Lower limits for particulate contamination are provided.

These are two groups of 8 registers representing the ``Upper Limit’’ and ``Lower
Limit’’ for particulate contamination. These are 64-71 and 72-79 respectively.

These are expressed in terms of the result codes using the same format as in 3.4. An
additional special value of 0x8000 (hexadecimal representation) is used to signify
a ``don’t care’’ setting for that limit code.

XVIII These will appear as 65535 and 63334 if read as unsigned integers as discussed in



Appendix B

Implementing Modbus 25

Implementing Modbus

This section is for advanced users who wish to do their own programming to im-
plement the modbus controller. It is not needed if the users control system already
has direct support for being a modbus master. The following describes a minimal
system capable of periodically reading data from the ICM, it is not intended as a
general purpose modbus implementation.

For a background to this section the implementor can review the modbus source
documents:

http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

In order to collect data from the ICM, the users control system needs to be able
to send a modbus command frame and receive a response frame via the RS485
signals.

A frame consists of a sequence of bytes, transmitted back-to-back over the RS485
interface.

A command frame can be generated corresponding to a modbus ``read registers’’
command. Using hexadecimal notation, the sequence required to return all regis-
ters would be a sequence of 8 bytes:

<0xCC> <0x04> <0x00> <0x00> <0x00> <0x7D> <0x20> <0x36>

This sequence is decoded by the ICM as:

<0xCC> = <slave address>
<0x04> = <function code:read registers>
<0x00> <0x00> = <start register high> <start register low> (2 bytes)
<0x00> <0x7D> = <number of registers high> <number of registers low> (2 bytes)
<0x20> <0x36> = <checksum high> <checksum low> (2 bytes)

The ICM will then return a 255 byte long response frame containing the requested
register contents.

This 255 byte response frame looks like:

<0xCC> <0x04> <0xfa> <250 bytes of data> <2 bytes of checksum>

http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf


Appendix B

26 Implementing Modbus

The <250 bytes of data> contains the contents of the 125 registers requested. Each
16 bit register is encoded in two sequential bytes, in high-low (``big-endian’’) order.

The simplest method is then to read the required registers directly out of the data
area of this response frame. For example, the ICM product ID code appears in
modbus register 0. This would therefore appear in the first two bytes of the data
area above, or at the 4th and 5th bytes counting from the start of the frame. In a
programming language like ``C’’ the product ID could be extracted from an array
containing the frame using a statement like:

unsigned product_id = 256*buf[3+0] + buf[3+1];

Users of PLCs or other programming languages will hopefully be able to translate
using the information provided here.

The ICM product ID is 0xD3DD (hexadecimal) or 54237 (decimal). This fact can
be used as a check when attempting the above implementation.

Finally we come to extracting the test result. Referring to the ICM modbus register
map, the test result codes appear in registers 56-63. In the case of NAS1638, the
overall NAS code is in register 56. So a program can extract the overall NAS code
from the result frame using logic equivalent to the ``C’’ language expression:

unsigned NAS = 256*buf[3 + 56*2 + 0] + buf[3 + 56*2 + 1]

This is a statement in the ``C’’ programming language that reads the 116th and
117th bytes of the response frame, and forms a 16 bit number from these two 8 bit
bytes. This reads modbus register 56, the NAS code.

Similar expressions can be used to read the other registers according to the data
required.

For PLC users the details will be dependent on their own programming environ-
ment and facilities. But hopefully the above can be used as a guide for their own
implementation,



Produced by MP Filtri UK

Revision 0.32

As a policy of continual improvement, MP Filtri UK reserve the right to alter specifications
without prior notice.

Except as permitted by such licence, no part of this publication may be reproduced, stored in
retrieval system or transmitted, in any form or any means, electronic, mechanical, recording, or
otherwise, without prior written permission of MP Filtri UK.




	1 Introduction
	1.1 Summary
	1.2 Overview
	1.3 Use PC Software for Configuration

	2 Electrical Connection
	3 Modbus Operations
	3.1 Modbus Settings
	3.2 Communications Check
	3.3 Result Format
	3.4 Result Codes
	3.4.1 Null Values
	3.4.2 ISO 4406
	3.4.3 NAS1638 / AS4059E-1 / ISO11218
	3.4.4 AS4059E-2

	3.5 Temperature and Water Content Measurements
	3.6 Commanding Test Start
	3.7 Test Status
	3.8 Test Completion
	3.9 Particle Counts

	A Reference
	Modbus Node Addressing
	Modbus Settings
	General Description
	Modbus Registers
	Modbus Register Numbering
	Status Registers
	Setting Registers
	Calibration Registers

	The Modbus Register Map
	Representation
	Modbus Registers
	Unsigned Integers
	Signed Integers
	32 Bit Unsigned Integers
	Bitmaps
	Arrays
	Packed Characters
	Date/Time

	Register Functions
	Test Mode
	Command Register
	Status Register
	Status Flags Bitmap
	Fault Flags Bitmap
	Particle Counts
	Result Format
	Result Codes
	Alarm Mode
	Alarm Limits


	B Implementing Modbus

